Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/151359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimó, Carles-
dc.date.accessioned2020-02-27T12:41:57Z-
dc.date.available2020-02-27T12:41:57Z-
dc.date.issued1982-
dc.identifier.urihttps://hdl.handle.net/2445/151359-
dc.descriptionPreprint enviat per a la seva publicació en una revista científica.ca
dc.description.abstractWe consider singularities of ordinary differential equations similar to the ones which appear in Celestial Mechanics. Using blow-up and time scaling the singular point is replaced by a manifold. In this manifold the flow is smooth, gradient-1ike and the critical points are (generically) hyperbolic. We look for conditions which assure regularizability of the singularity. Four conditions concerning the invariant manifolds of the critical points on the manifold, the variational equations along these manifolds and the eigenvalues of the linear part of the field at the critical points are necessary. It is proved that they are also sufficient. Several exemples are included.ca
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.relation.isformatofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 31.8]-
dc.relation.ispartofseriesMathematics Preprint Series; 9ca
dc.rights(c) Simó, Carles, 1982-
dc.sourcePreprints de Matemàtiques - Mathematics Preprint Series-
dc.subject.classificationGeometria algebraica-
dc.subject.otherUniversitat de Barcelona. Institut de Matemàtica-
dc.titleNecessary and sufficient conditions for the geometrical regularization of singularitiesca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/submittedVersion-
dc.identifier.dlDL B 19760-1982-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Preprints de Matemàtiques - Mathematics Preprint Series

Files in This Item:
File Description SizeFormat 
MPS_N009.pdf556.33 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.