Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/164429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBruna, Joaquim-
dc.contributor.authorOrtega Cerdà, Joaquim-
dc.date.accessioned2020-06-05T09:08:01Z-
dc.date.available2020-06-05T09:08:01Z-
dc.date.issued1997-
dc.identifier.issn0391-173X-
dc.identifier.urihttp://hdl.handle.net/2445/164429-
dc.description.abstractThe problem we solve in this paper is to characterize, in a smooth domain $\Omega$ in $\mathbb{R}^{n}$ and for $1 \leq p \leq \infty,$ those positive Borel measures on $\Omega$ for which there exists a subharmonic function $u \in L^{p}(\Omega)$ such that $\Delta u=\mu$.-
dc.format.extent21 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCentro Edizioni Scuola Normale Superiore di Pisa-
dc.relation.isformatofVersió postprint del document publicat a: http://www.numdam.org/item/ASNSP_1997_4_24_3_571_0/-
dc.relation.ispartofAnnali della Scuola Normale Superiore di Pisa. Classe di Scienze, 1997, vol. 24, p. 571-591-
dc.rights(c) Centro Edizioni Scuola Normale Superiore di Pisa, 1997-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationTeoria del potencial (Matemàtica)-
dc.subject.classificationEquacions en derivades parcials-
dc.subject.classificationFuncions holomorfes-
dc.subject.otherPotential theory (Mathematics)-
dc.subject.otherPartial differential equations-
dc.subject.otherHolomorphic functions-
dc.titleOn Lp solutions to the Laplace equation and zeros of holomorphic functions-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec136635-
dc.date.updated2020-06-05T09:08:01Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
136635.pdf355.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.