Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/170755
Title: Independent Combinatoric Worm Principles for First Order Arithmetic and Beyond
Author: Papafilippou, Konstantinos
Director/Tutor: Joosten, Joost J.
Keywords: Lògica matemàtica
Aritmètica
Treballs de fi de màster
Mathematical logic
Arithmetic
Master's theses
Issue Date: Sep-2020
Abstract: In this thesis we study Beklemishev’s combinatorial principle Every Worm Dies, EWD which although true, it is unprovable in Peano Arithmetic (PA). The principle talks about sequences of modal formulas, the finiteness of all of them being equivalent to the one-consistency of PA. We present the elements of proof theory at play here and perform two attempts at generalizing this theorem. One is directed towards its relationship with some known fragments of PA while the other aims to see its connection with fragments of second order arithmetic.
Note: Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona, Curs: 2019-2020, Tutor: Joost J. Joosten
URI: https://hdl.handle.net/2445/170755
Appears in Collections:Màster Oficial - Pure and Applied Logic / Lògica Pura i aplicada

Files in This Item:
File Description SizeFormat 
TFM_Papafilippou Konstantinos.pdf985.25 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons