Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/170788
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVitrià i Marca, Jordi-
dc.contributor.authorDomingo Colomer, Laia-
dc.date.accessioned2020-09-22T08:04:53Z-
dc.date.available2020-09-22T08:04:53Z-
dc.date.issued2020-06-25-
dc.identifier.urihttps://hdl.handle.net/2445/170788-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2020, Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] The monitoring of machine health has become of great importance in the industry in the recent years. Unexpected equipment failures can lead to catastrophic consequences, such as production downtime and costly equipment replacement. Rolling bearings are one of the most delicate components of rotating equipment, being a common cause of machine failures. For this reason, predictive maintenance techniques of rolling bearings are fundamental to preserve the health of a machine. In this project, we present a deep learning approach to predict bearing failures in their early development. All methodologies are data-driven, therefore they do not assume any expert knowledge on the field nor require any information about the equipment’s operating conditions. For this reason, this approach is versatile and can be used to diagnose multiple machines.ca
dc.format.extent56 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Laia Domingo Colomer, 2020-
dc.rightscodi: GPL (c) Laia Domingo Colomer, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationManteniment industrial-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationMaquinària-
dc.subject.otherMachine learning-
dc.subject.otherPlant maintenance-
dc.subject.otherMaster's theses-
dc.subject.otherMachines-
dc.titleDeep learning for predictive maintenance of rolling bearingsca
dc.typeinfo:eu-repo/semantics/reportca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
170788.pdfMemòria2.49 MBAdobe PDFView/Open
PFM_Bearing_Fault_Detection-master.zipCodi font673.71 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons