Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/174588
Title: Magnetic droplet solitons
Author: Macià Bros, Ferran
Kent, A. D.
Keywords: Anisotropia
Pel·lícules fines
Oscil·lacions
Magnetisme
Anisotropy
Thin films
Oscillations
Magnetism
Issue Date: 8-Sep-2020
Publisher: American Institute of Physics
Abstract: Magnetic droplet solitons are dynamical magnetic textures that form due to an attractive interaction between spin waves in thin films with perpendicular magnetic anisotropy. Spin currents and the spin torques associated with these currents enable their formation as they provide a means to excite non-equilibrium spin-wave populations and compensate their decay. Recent years have seen rapid advances in experiments that realize and study magnetic droplets. Important advances include the first direct x-ray images of droplets, determination of their threshold and sustaining currents, measurement of their generation and annihilation time, and evidence for drift instabilities, which can limit their lifetime. This perspective discusses these studies and contrasts these solitons to other types of spin-current excitations, such as spin-wave bullets, and static magnetic textures, including magnetic vortices and skyrmions. Magnetic droplet solitons can also serve as current controlled microwave frequency oscillators with potential applications in neuromorphic chips as nonlinear oscillators with memory.
Note: Reproducció del document publicat a: https://doi.org/10.1063/5.0018251
It is part of: Journal of Applied Physics, 2020, vol. 128, p. 100901
URI: https://hdl.handle.net/2445/174588
Related resource: https://doi.org/10.1063/5.0018251
ISSN: 0021-8979
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
704690.pdf2.51 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons