Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/181456
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmar, Ansari Saleh | - |
dc.contributor.author | Boj del Val, Eva | - |
dc.contributor.author | El Safty, M. A. | - |
dc.contributor.author | AlZahrani, Samirah | - |
dc.contributor.author | El-Khawaga, Hamed | - |
dc.date.accessioned | 2021-11-23T15:26:58Z | - |
dc.date.available | 2021-11-23T15:26:58Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1546-2218 | - |
dc.identifier.uri | https://hdl.handle.net/2445/181456 | - |
dc.description.abstract | This study focuses on the novel forecasting method (SutteARIMA) and its application in predicting Infant Mortality Rate data in Indonesia. It undertakes a comparison of the most popular and widely used four forecasting methods: ARIMA, Neural Networks Time Series (NNAR), Holt-Winters, and SutteARIMA. The data used were obtained from the website of the World Bank. The data consisted of the annual infant mortality rate (per 1000 live births) from 1991 to 2019. To determine a suitable and best method for predicting Infant Mortality rate, the forecasting results of these four methods were compared based on the mean absolute percentage error (MAPE) and mean squared error (MSE). The results of the study showed that the accuracy level of SutteARIMA method (MAPE: 0.83% and MSE: 0.046) in predicting Infant Mortality rate in Indonesia was smaller than the other three forecasting methods, specifically the ARIMA (0.2.2) with a MAPE of 1.21% and a MSE of 0.146; the NNAR with a MAPE of 7.95% and a MSE of 3.90; and the Holt-Winters with a MAPE of 1.03% and a MSE: of 0.083. | - |
dc.format.extent | 16 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Tech Science Press | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.32604/cmc.2022.021382 | - |
dc.relation.ispartof | CMC-Computers Materials & Continua, 2022, vol. 70, num. 3, p. 6007-6022 | - |
dc.relation.uri | https://doi.org/10.32604/cmc.2022.021382 | - |
dc.rights | cc-by (c) Ahmar, Ansari Saleh et al., 2022 | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.source | Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial) | - |
dc.subject.classification | Mortalitat | - |
dc.subject.classification | Anàlisi de sèries temporals | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.classification | Teoria de la predicció | - |
dc.subject.classification | Indonèsia | - |
dc.subject.other | Mortality | - |
dc.subject.other | Time-series analysis | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.subject.other | Prediction theory | - |
dc.subject.other | Indonesia | - |
dc.title | SutteARIMA: A Novel Method for Forecasting the Infant Mortality Rate in Indonesia | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 714859 | - |
dc.date.updated | 2021-11-23T15:26:59Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
714859.pdf | 367.87 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License