Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/183419
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVitrià i Marca, Jordi-
dc.contributor.advisorGómez Duran, Paula-
dc.contributor.authorLucas Castellano, Aitor-
dc.contributor.authorRabella Gras, Noel-
dc.date.accessioned2022-02-22T12:50:14Z-
dc.date.available2022-02-22T12:50:14Z-
dc.date.issued2021-07-01-
dc.identifier.urihttps://hdl.handle.net/2445/183419-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Jordi Vitrià i Marca i Paula Gómez Duranca
dc.description.abstract[en] In recent years, deep neural networks have been successful in a lot of tasks in both industry and academia due to its scalability to mange large volumes of data and model parameters. Unfortunately, creating those large models and use their predictions can be computationally expensive to deploy on devices with limited resources. There is a TV channel called TV3 that wants to improve its recommendation engine without the mentioned impediments. In that thesis, we aim to solve part of that problem by using YOLO and Places to detect objects and scenes respectively, and build a smaller model able to learn from them and extract frame objects and scenes by itself. To do it, we have analyzed in depth Heterogeneous Classifiers (HC), that ensemble models with some different classes in a smaller model using a convex optimization approach. As HCs do not handle an scenario where classes differ completely between models, which is the TV3 case, we have implemented the smaller model following a label prediction approach by using RMSE and we have evaluated the model with ranking metrics as we have faced an unsupervised problem.ca
dc.format.extent54 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Aitor Lucas Castellano i Noel Rabella Gras, 2021-
dc.rightscodi: GPL (c) Aitor Lucas Castellano i Noel Rabella Gras, 2021-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationXarxes neuronals convolucionals-
dc.subject.classificationReconeixement de formes (Informàtica)-
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationProgrames de televisióca
dc.subject.otherConvolutional neural networks-
dc.subject.otherPattern recognition systems-
dc.subject.otherLearning classifier systems-
dc.subject.otherMaster's theses-
dc.subject.otherTelevision programsen
dc.titleDeep learning for content-based indexing of TV programsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
tfm_aitor_lucas_noel_rabella.pdfMemòria6.62 MBAdobe PDFView/Open
uhc_distillation-main.zipCodi font1.24 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons