Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/186070
Title: SSSGAN:Satellite Style and Structure Generative Adversarial Networks
Author: Tylson Baixauli, Emilio
Director/Tutor: Escalera Guerrero, Sergio
Marín Tur, Javier
Keywords: Imatges satel·litàries
Visió per ordinador
Aprenentatge automàtic
Treballs de fi de màster
Remote-sensing images
Computer vision
Machine learning
Master's theses
Issue Date: 30-Jun-2021
Abstract: [en] This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Sergio Escalera Guerrero i Javier Marín Tur
URI: https://hdl.handle.net/2445/186070
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
ETylson-sssgan_tfm_ub-e0beb851662f.zipCodi font72.81 MBzipView/Open
tfg_tylson_baixauli_emilio.pdfMemòria45 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons