Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/186272
Title: Teoria moderna de carteres
Author: Bonastre Sanz, Pol
Director/Tutor: Corcuera Valverde, José Manuel
Ortí Celma, Francesc J. (Francesc Josep)
Keywords: Gestió de cartera
Valors
Inversions
Treballs de fi de grau
Portfolio management
Securities
Investments
Bachelor's theses
Issue Date: 24-Jan-2022
Abstract: [en] Investments and mathematics are closely related. In this project will be shown some usefull methods for investors. First of all we expose the Markowitz mean-variance portfolio theory. This let us get eficient portfolios through an optimation problem that is solved by Karush-Kuhn-Tucker conditions (known as KKT conditions), that are an extension of Lagrange multipliers. Mean-variance analysis is the basis of the capital asset pricing model (CAPM), one of the most used methods by investors. CAPM model is based on risk-return trade-off of assets. Alternative asset princing models based on factors are presented, particularly the arbitrage pricing model (APT). Finally a practical example of some concepts of Markowitz model is shown through python language.
Note: Treballs Finals del Doble Grau d'Administració i Direcció d'Empreses i de Matemàtiques, Facultat d'Economia i Empresa i Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Curs: 2021-2022, Tutor: José Manuel Corcuera Valverde i Francesc J. Ortí Celma
URI: https://hdl.handle.net/2445/186272
Appears in Collections:Treballs Finals de Grau (TFG) - Administració i Direcció d’Empreses i Matemàtiques (Doble Grau)

Files in This Item:
File Description SizeFormat 
tfg_bonastre_sanz_pol.pdfMemòria1.47 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons