Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/187661
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Díaz Guilera, Albert | - |
dc.contributor.advisor | Pujol Vila, Oriol | - |
dc.contributor.author | Córdoba Meneses, Alfons | - |
dc.date.accessioned | 2022-07-13T07:37:30Z | - |
dc.date.available | 2022-07-13T07:37:30Z | - |
dc.date.issued | 2021-01-18 | - |
dc.identifier.uri | https://hdl.handle.net/2445/187661 | - |
dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Albert Díaz Guilera i Oriol Pujol Vila | ca |
dc.description.abstract | [en] The aim of this thesis is to primarily learn to predict trajectories of physical systems by using Machine Learning. We have used the Interaction Network as a base model and introduced tweaks to its structure in the framework of Graph Networks in order to deal with systems without interaction, with force-based interactions and systems governed by the Vicsek model. We have been able to replicate very well systems without interaction and systems governed by a Vicsek model of infinite reach. However the results with force-based systems are mediocre because they need more trainable parameters and training data. The results for the Vicsek model with a finite radius of reach are the worst but we have learned the necessity and the methodology of introducing attention to the base model to deal with this class of problem. | ca |
dc.format.extent | 55 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Alfons Córdoba Meneses, 2021 | - |
dc.rights | codi: Apache (c) Alfons Córdoba Meneses, 2021 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.rights.uri | http://www.apache.org/licenses/ | * |
dc.source | Màster Oficial - Fonaments de la Ciència de Dades | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Sistemes complexos | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.classification | Cinemàtica | ca |
dc.subject.other | Machine learning | - |
dc.subject.other | Complex systems | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.subject.other | Master's theses | - |
dc.subject.other | Kinematics | en |
dc.title | Simulation of physical systems with variants of the Interaction Network | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Programari - Treballs de l'alumnat Màster Oficial - Fonaments de la Ciència de Dades |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ModifiedInteractionNetworks-main.zip | Codi font | 4.15 MB | zip | View/Open |
tfm_cordoba_meneses_alfons.pdf | Memòria | 1.01 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License