Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/190826
Title: DNA methylation-associated dysregulation of transfer RNA expression in human cancer
Author: Rosselló Tortella, Margalida
Bueno-Costa, Alberto
Martínez-Verbo, Laura
Villanueva, Lorea
Esteller, Manel
Keywords: ADN
Epigènesi
Tumors
RNA
DNA
Epigenesis
Tumors
RNA
Issue Date: 12-Feb-2022
Publisher: BioMed Central
Abstract: The human cytoplasmatic pool of tRNA for the 20 proteinogenic amino acids and selenocysteine is composed of 48 isoacceptor families -those tRNA with different anticodons- divided into 253 different isodecoder species -those tRNAs that share the same anticodon but present sequence variations in other positions [1, 2]. All these molecules cooperate to translate the genetic information encoded in mRNA to enable protein synthesis. For many years, tRNAs have been considered as housekeeping molecules without any additional regulatory function, but compelling recent evidence of the intricacy of tRNA biology have proven that this initial misconception was far from reality. In fact, tRNAs actively engage in protein synthesis regulation and in additional molecular processes that are unrelated to translation, like apoptosis prevention and the generation of small derivative non-coding RNAs that perform further cellular functions
Note: Reproducció del document publicat a: https://doi.org/10.1186/s12943-022-01532-w
It is part of: Molecular Cancer, 2022, vol. 21 , num. 1, p. 48
URI: https://hdl.handle.net/2445/190826
Related resource: https://doi.org/10.1186/s12943-022-01532-w
ISSN: 1476-4598
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
725735.pdf5.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons