Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/192312
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | García-Alfonso, Ernesto | - |
dc.contributor.author | Barranco Gómez, Manuel | - |
dc.contributor.author | Bonhommeau, David A. | - |
dc.contributor.author | Halberstadt, Nadine | - |
dc.contributor.author | Pi Pericay, Martí | - |
dc.contributor.author | Calvo, Florent | - |
dc.date.accessioned | 2023-01-18T16:17:21Z | - |
dc.date.available | 2023-07-05T05:10:22Z | - |
dc.date.issued | 2022-07-05 | - |
dc.identifier.issn | 0021-9606 | - |
dc.identifier.uri | https://hdl.handle.net/2445/192312 | - |
dc.description.abstract | The clustering, collision, and relaxation dynamics of pristine and doped helium nanodroplets is theoretically investigated in cases of pickup and clustering of heliophilic argon, collision of heliophobic cesium atoms, and coalescence of two droplets brought into contact by their mutual long-range van der Waals interaction. Three approaches are used and compared with each other. The He time-dependent density functional theory method considers the droplet as a continuous medium and accounts for its superfluid character. The ring-polymer molec- ular dynamics method uses a path-integral description of nuclear motion and incorporates zero-point delocalization while bosonic exchange effects are ignored. Finally, the zero-point averaged dynamics approach is a mixed quantum-classical method in which quantum delocaliza- tion is described by attaching a frozen wavefunction to each He atom, equivalent to classical dynamics with effective interaction potentials. All three methods predict that the growth of argon clusters is significantly hindered by the helium host droplet due to the impeding shell structure around the dopants and kinematic effects freezing the growing cluster in metastable configurations. The effects of superfluidity are qualitatively manifested by different collision dynamics of the heliophilic atom at high velocities, as well as quadrupole oscillations that are not seen with particle-based methods, for droplets experiencing a collision with cesium atoms or merging with each other. | - |
dc.format.extent | 14 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Institute of Physics (AIP) | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1063/5.0091942 | - |
dc.relation.ispartof | Journal of Chemical Physics, 2022, vol. 157, p. 1-14 | - |
dc.relation.uri | https://doi.org/10.1063/5.0091942 | - |
dc.rights | (c) American Institute of Physics (AIP), 2022 | - |
dc.source | Articles publicats en revistes (Física Quàntica i Astrofísica) | - |
dc.subject.classification | Dinàmica de fluids | - |
dc.subject.classification | Heli | - |
dc.subject.classification | Teoria del funcional de densitat | - |
dc.subject.other | Fluid dynamics | - |
dc.subject.other | Helium | - |
dc.subject.other | Density functionals | - |
dc.title | Clustering, collision, and relaxation dynamics in pure and doped helium nanoclusters: Density- vs particle-based approaches | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 725426 | - |
dc.date.updated | 2023-01-18T16:17:22Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
725426.pdf | 6.69 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.