Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/192324
Title: Estudi de l'aprenentatge automàtic per a la diagnosi del càncer de mama
Author: Puig i Casanovas, Natàlia
Director/Tutor: Baena i Miret, Sergi
Vives i Santa Eulàlia, Josep, 1963-
Keywords: Anàlisi multivariable
Treballs de fi de grau
Anàlisi factorial
Aprenentatge automàtic
Sistemes classificadors (Intel·ligència artificial)
Multivariate analysis
Bachelor's theses
Factor analysis
Machine learning
Learning classifier systems
Issue Date: 12-Jun-2022
Abstract: [en] In this project we will show and discuss the classification algorithms, specifically, for the breast cancer diagnosis. From a theoretical point of view, we will study and prove the basic results of multivariate analysis, such as: dimension theorem, properties of multivariate distributions and the necessary results of Principal Components Analysis (PCA) with their respectively proofs. Then, from a more practical point of view, we will present the observed data, understanding their meaning, studying their properties and the subsequent application of a PCA. Finally, using R programming language, we will apply the data to the classification algorithms Naive Bayes and Support Vector Machine, showing the results that they provide. As well as we will see a brief explanation of the K-NN algorithm.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Sergi Baena i Miret
URI: https://hdl.handle.net/2445/192324
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_puig_casanovas_natalia.pdfMemòria1.11 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons