Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/192685
Title: Complex selection on 5' splice sites in intron-rich organisms
Author: Irimia, Manuel
Roy, Scott William
Neafsey, Daniel E.
Abril Ferrando, Josep Francesc, 1970-
Garcia Fernández, Jordi
Koonin, Eugene V.
Keywords: Procariotes
Cèl·lules eucariotes
Genomes
Prokaryotes
Eukaryotic cells
Genomes
Issue Date: 2009
Publisher: Cold Spring Harbor Laboratory Press
Abstract: In contrast to the typically streamlined genomes of prokaryotes, many eukaryotic genomes are riddled with long intergenic regions, spliceosomal introns, and repetitive elements. What explains the persistence of these and other seemingly suboptimal structures? There are three general hypotheses: (1) the structures in question are not actually suboptimal but optimal, being favored by selection, for unknown reasons; (2) the structures are not suboptimal, but of (essentially) equal fitness to 'optimal' ones; or (3) the structures are truly suboptimal, but selection is too weak to systematically eliminate them. The 5' splice sites of introns offer a rare opportunity to directly test these hypotheses. Intron-poor species show a clear consensus splice site; most introns begin with the same six nucleotide sequence (typically GTAAGT or GTATGT), indicating efficient selection for this consensus sequence. In contrast, intron-rich species have much less pronounced boundary consensus sequences, and only small minorities of introns in intron-rich species share the same boundary sequence. We studied rates of evolutionary change of 5' splice sites in three groups of closely related intron-rich species--three primates, five Drosophila species, and four Cryptococcus fungi. Surprisingly, the results indicate that changes from consensus-to-variant nucleotides are generally disfavored by selection, but that changes from variant to consensus are neither favored nor disfavored. This evolutionary pattern is consistent with selective differences across introns, for instance, due to compensatory changes at other sites within the gene, which compensate for the otherwise suboptimal consensus-to-variant changes in splice boundaries.
Note: Reproducció del document publicat a: https://doi.org/10.1101/gr.089276.108
It is part of: Genome Research, 2009, vol. 19, num. 11, p. 2021-2027
URI: https://hdl.handle.net/2445/192685
Related resource: https://doi.org/10.1101/gr.089276.108
ISSN: 1088-9051
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
571554.pdf581.86 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons