Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/195282
Title: | Elementary matrix decomposition and the computation of Darmon points with higher conductor |
Author: | Guitart Morales, Xavier Masdeu, Marc |
Keywords: | Funcions L Àlgebra lineal Teoria de la matriu S Teoria de nombres L-functions Linear algebra S-matrix theory Number theory |
Issue Date: | Mar-2015 |
Publisher: | American Mathematical Society (AMS) |
Abstract: | We extend the algorithm of Darmon-Green and Darmon-Pollack for computing $p$-adic Darmon points on elliptic curves to the case of composite conductor. We also extend the algorithm of Darmon-Logan for computing ATR Darmon points to treat curves of nontrivial conductor. Both cases involve an algorithmic decomposition into elementary matrices in congruence subgroups $\Gamma_1(\mathfrak{N})$ for ideals $\mathfrak{N}$ in certain rings of $S$-integers. We use these extensions to provide additional evidence in support of the conjectures on the rationality of Darmon points. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1090/S0025-5718-2014-02853-6 |
It is part of: | Mathematics of Computation, 2015, vol. 84, num. 292, p. 875-893 |
URI: | https://hdl.handle.net/2445/195282 |
Related resource: | https://doi.org/10.1090/S0025-5718-2014-02853-6 |
ISSN: | 0025-5718 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
650049.pdf | 347.69 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License