Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/195282
Title: Elementary matrix decomposition and the computation of Darmon points with higher conductor
Author: Guitart Morales, Xavier
Masdeu, Marc
Keywords: Funcions L
Àlgebra lineal
Teoria de la matriu S
Teoria de nombres
L-functions
Linear algebra
S-matrix theory
Number theory
Issue Date: Mar-2015
Publisher: American Mathematical Society (AMS)
Abstract: We extend the algorithm of Darmon-Green and Darmon-Pollack for computing $p$-adic Darmon points on elliptic curves to the case of composite conductor. We also extend the algorithm of Darmon-Logan for computing ATR Darmon points to treat curves of nontrivial conductor. Both cases involve an algorithmic decomposition into elementary matrices in congruence subgroups $\Gamma_1(\mathfrak{N})$ for ideals $\mathfrak{N}$ in certain rings of $S$-integers. We use these extensions to provide additional evidence in support of the conjectures on the rationality of Darmon points.
Note: Versió postprint del document publicat a: https://doi.org/10.1090/S0025-5718-2014-02853-6
It is part of: Mathematics of Computation, 2015, vol. 84, num. 292, p. 875-893
URI: https://hdl.handle.net/2445/195282
Related resource: https://doi.org/10.1090/S0025-5718-2014-02853-6
ISSN: 0025-5718
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
650049.pdf347.69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons