Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/197406
Title: PdO and PtO doped WS2 boosts NO2 gas sensing characteristics at room temperature
Author: Alagh, Aanchal
Annanouch, Fatima
Alyoussef, Khaled
Bittencourt, Carla
Güell Vilà, Frank
Martínez-Alanis, Paulina R.
Reguant, Marc
Llobet, Eduard
Keywords: Tungstè
Nanoestructures
Deposició química en fase vapor
Tungsten
Nanostructures
Chemical vapor deposition
Issue Date: 2-May-2022
Publisher: Elsevier B.V.
Abstract: In this work tungsten disulphide nanostructures loaded with platinum-oxide (PtO), or palladium-oxide (PdO) were grown directly onto alumina substrates. This was achieved using a combination of aerosol-assisted chemical vapour deposition (AA-CVD) method with atmospheric pressure CVD technique. At first, tungsten oxide nanowires loaded with either PtO or PdO nanoparticles were successfully co-deposited via AA-CVD followed by sulfurization at 900 °C in the next step. The morphological, structural, and chemical characteristics were investigated using FESEM, TEM, XRD, XPS and Raman spectroscopy. The results confirm the presence of PdO and PtO in the WS2 host matrix. Gas sensing attributes of loaded and pristine WS2 sensors were investigated, at room temperature, towards different analytes (NO2, NH3, H2 etc.). Both pristine and metal-oxide loaded WS2 gas sensors show remarkable responses at room temperature towards NO2 detection. Further, the loaded sensors demonstrated stable, reproducible, ultrasensitive, and enhanced gas sensing response, with a detection limit below 25 ppb. Additionally, the effect of ambient humidity on the sensing response of both loaded and pristine sensors was investigated for NO2 gas. The response of PtO loaded sensor considerably decreased in humid environments, while the response for pristine and PdO loaded sensors increased. However, slightly heating (at 100 °C) the sensors, suppresses the influence of humidity. Finally, the long-term stability of different sensors is investigated, and the results demonstrate high stability with repeatable results after 6 weeks of gas sensing tests. This work exploits an attractive pathway to add functionality in the transition metal dichalcogenide host matrix.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.snb.2022.131905
It is part of: Sensors and Actuators B-Chemical, 2022, vol. 364, p. 131905
URI: https://hdl.handle.net/2445/197406
Related resource: https://doi.org/10.1016/j.snb.2022.131905
ISSN: 0925-4005
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
730075.pdf11.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons