Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/197427
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheca, Martí-
dc.contributor.authorJin, Xin-
dc.contributor.authorMillán Solsona, Rubén-
dc.contributor.authorNeumayer, Sabine M.-
dc.contributor.authorSusner, Michael A.-
dc.contributor.authorMcGuire, Michael A.-
dc.contributor.authorO'Hara, Andrew-
dc.contributor.authorGomila Lluch, Gabriel-
dc.contributor.authorMaksymovych, Petro-
dc.contributor.authorPantelides, Socrates T.-
dc.contributor.authorCollins, Liam-
dc.date.accessioned2023-05-02T08:55:48Z-
dc.date.available2023-08-23T05:10:31Z-
dc.date.issued2022-08-23-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/2445/197427-
dc.description.abstractVan der Waals layered ferroelectrics, such as CuInP2S6 (CIPS), offer a versatile platform for miniaturization of ferroelectric device technology. Control of the targeted composition and kinetics of CIPS synthesis, enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and non-ferroelectric In4/3P2S6 (IPS). Here, we use advanced quantitative scanning probe microscopy and density-functional-theory to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure. We report evidence of fast ionic transport mediating an appreciable out-of-plane electromechanical response of CIPS in the paraelectric phase. Further, we map the local dielectric constant and ionic conductivity on the nanoscale as we thermally stimulate the ferroelectric-paraelectric phase transition, recovering the bulk dielectric peak of the transition at the nanoscale. Finally, we discover a conductivity enhancement at the CIPS/IPS interface, indicating the possibility of engineering its interfacial properties for next generation device applications.-
dc.format.extent29 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acsnano.2c06992-
dc.relation.ispartofACS Nano, 2022, vol. 16, num. 9, p. 15347-15357-
dc.relation.urihttps://doi.org/10.1021/acsnano.2c06992-
dc.rights(c) American Chemical Society , 2022-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationMicroscòpia electrònica d'escombratge-
dc.subject.classificationNanotecnologia-
dc.subject.classificationMicroscòpia de força atòmica-
dc.subject.otherScanning electron microscopy-
dc.subject.otherNanotechnology-
dc.subject.otherAtomic force microscopy-
dc.titleRevealing Fast Cu-Ion Transport and Enhanced Conductivity at the CuInP2S6-In4/3P2S6 Heterointerface-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec729157-
dc.date.updated2023-05-02T08:55:48Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
729157.pdf1.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.