Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/197428
Title: | Degree of irrationality of a very general Abelian variety |
Author: | Colombo. Elisabetta Matin, Olivier Naranjo del Val, Juan Carlos Pirola, Gian Pietro |
Keywords: | Varietats abelianes Geometria algebraica Geometria biracional Abelian varieties Algebraic geometry Birational geometry |
Issue Date: | 1-Jun-2022 |
Publisher: | Oxford University Press |
Abstract: | Consider a very general abelian variety $A$ of dimension at least 3 and an integer $0<d \leq \operatorname{dim} A$. We show that if the map $A^k \rightarrow \mathrm{CH}_0(A)$ has a $d$-dimensional fiber then $k \geq d+(\operatorname{dim} A+1) / 2$. This extends results of the second-named author which covered the cases $d=1,2$. As a geometric application, we prove that any dominant rational map from a very general abelian $g$-fold to $\mathbb{P}^g$ has degree at least $(3 g+1) / 2$ for $g \geq 3$, thus improving results of Alzati and the last-named author in the case of a very general abelian variety. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1093/imrn/rnaa358 |
It is part of: | International Mathematics Research Notices, 2022, vol. 2022, num. 11, p. 8295-8313 |
URI: | https://hdl.handle.net/2445/197428 |
Related resource: | https://doi.org/10.1093/imrn/rnaa358 |
ISSN: | 1073-7928 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
703126.pdf | 167.45 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.