Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/197428
Title: Degree of irrationality of a very general Abelian variety
Author: Colombo. Elisabetta
Matin, Olivier
Naranjo del Val, Juan Carlos
Pirola, Gian Pietro
Keywords: Varietats abelianes
Geometria algebraica
Geometria biracional
Abelian varieties
Algebraic geometry
Birational geometry
Issue Date: 1-Jun-2022
Publisher: Oxford University Press
Abstract: Consider a very general abelian variety $A$ of dimension at least 3 and an integer $0<d \leq \operatorname{dim} A$. We show that if the map $A^k \rightarrow \mathrm{CH}_0(A)$ has a $d$-dimensional fiber then $k \geq d+(\operatorname{dim} A+1) / 2$. This extends results of the second-named author which covered the cases $d=1,2$. As a geometric application, we prove that any dominant rational map from a very general abelian $g$-fold to $\mathbb{P}^g$ has degree at least $(3 g+1) / 2$ for $g \geq 3$, thus improving results of Alzati and the last-named author in the case of a very general abelian variety.
Note: Versió postprint del document publicat a: https://doi.org/10.1093/imrn/rnaa358
It is part of: International Mathematics Research Notices, 2022, vol. 2022, num. 11, p. 8295-8313
URI: https://hdl.handle.net/2445/197428
Related resource: https://doi.org/10.1093/imrn/rnaa358
ISSN: 1073-7928
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
703126.pdf167.45 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.