Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/198069
Title: Co-elimination and survival in gene network evolution: dismantling the RA-signaling in a chordate
Author: Martí-Solans, Josep
Belyaeva, Olga V.
Torres Águila, Nuria Paz
Kedishvili, Natalia Y.
Albalat Rodríguez, Ricard
Cañestro García, Cristian
Keywords: Cordats
Genòmica
Chordata
Genomics
Issue Date: 30-May-2016
Publisher: Oxford University Press
Abstract: The bloom of Genomics is revealing gene loss as a pervasive evolutionary force generating genetic diversity that shapes the evolution of species. Outside bacteria and yeast, however, the understanding of the process of gene loss remains elusive, especially in the evolution of animal species. Here, using the dismantling of the retinoic acid metabolic gene network (RA-MGN) in the chordate Oikopleura dioica as a case study, we combine approaches of comparative genomics, phylogenetics, biochemistry and developmental biology to investigate the mutational robustness associated to biased patterns of gene loss. We demonstrate the absence of alternative pathways for RA-synthesis in O. dioica, which suggests that gene losses of RA-MGN were not compensated by mutational robustness, but occurred in a scenario of regressive evolution. In addition, the lack of drastic phenotypic changes associated to the loss of RA-signaling provides an example of the inverse paradox of Evo-Devo. This work illustrates how the identification of patterns of gene co-elimination - in our case five losses (Rdh10, Rdh16, Bco1, Aldh1a and Cyp26)- is a useful strategy to recognize gene network modules associated to distinct functions. Our work also illustrates how the identification of survival genes helps to recognize neofunctionalization events and ancestral functions. Thus, the survival and extensive duplication of Cco and RdhE2 in O. dioica correlated with the acquisition of complex compartmentalization of expression domains in the digestive system and a process of enzymatic neofunctionalization of the Cco, while the surviving Aldh8 could be related to its ancestral housekeeping role against toxic aldehydes.
Note: Versió postprint del document publicat a: https://doi.org/10.1093/molbev/msw118
It is part of: Molecular Biology and Evolution, 2016, vol. 33, num. 9, p. 2401-2416
URI: https://hdl.handle.net/2445/198069
Related resource: https://doi.org/10.1093/molbev/msw118
ISSN: 0737-4038
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
662796.pdf1.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.