Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/198754
Title: El Teorema de Brown-Shields-Zeller
Author: Márquez Martı́nez, Ferran
Director/Tutor: Massaneda Clares, Francesc Xavier
Keywords: Anàlisi harmònica
Treballs de fi de grau
Espais de Hardy
Teoria del potencial (Matemàtica)
Harmonic analysis
Bachelor's theses
Hardy spaces
Potential theory (Mathematics)
Issue Date: 24-Jan-2023
Abstract: [en] In this memoir we will prove the extension of the Brown-Shields-Zeller Theorem to $H^p$, which states that a sequence in the unit disk $\mathbb{D}$ is sampling for the Hardy space $H^p$ if and only if almost every point of the unit circle is a non-tangential limit point of the sequence. To prove this result we will base our study in the Harmonic analysis, in particular the study of harmonic functions and Poisson kernels and integrals, which will play an important role in the work. Finally, we will finish with a factorization on the Hardy spaces to give way to the proof of Brown-Shields-Zeller.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Francesc Xavier Massaneda Clares
URI: https://hdl.handle.net/2445/198754
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_marquez_martinez_ferran.pdfMemòria669.22 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons