Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/202067
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDieulefait, L. V. (Luis Victor)-
dc.contributor.authorAbdul Parveen, Habib Ullah-
dc.date.accessioned2023-09-20T09:52:22Z-
dc.date.available2023-09-20T09:52:22Z-
dc.date.issued2023-06-28-
dc.identifier.urihttps://hdl.handle.net/2445/202067-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Luis Victor Dieulefaitca
dc.description.abstract[en] Fermat's Last Theorem states the equation $$ a^n+b^n+c^n=0 $$ has only trivial solutions, i.e $a b c=0$, for $n>2$ and $a, b, c$ integers. The idea of the proof is to attach the Frey Curve $$ E_{a^p, b^p, c^p}: y^2=x\left(x-a^p\right)\left(x+b^p\right), $$ of course we assume $a, b, c$ are coprime integers with $a \equiv-1 \bmod 4$ and $2 \mid b$. The conductor of this curve is $$ N_{a^p, b^p, c^p}=\prod_{\ell \mid a b c, \ell \text { prime }} \ell . $$ The curve is semistable and so modular by Wile's Theorem, since the conductor is of the form $2 N$ for some odd integer $N$, we can apply Ribet's Theorem to show there is a weight 2 newform $g$ of level 2 such that $\bar{\rho}_g \cong$ of level 2. The first section is devoted to introduce the concepts needed to understand in more extense this proof. So, Galois representations, modular forms and Elliptics are introduced and some results stated. At the end, a more detailed proof is given. In the second section we consider solutions over some real quadratic feilds $K$. We show a non-trivial solution in $K$ gives rise to a non-trivial solution.ca
dc.format.extent43 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Habib Ullah Abdul Parveen, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationDarrer teorema de Fermatcat
dc.subject.classificationFormes modularscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherFermat's last theoremeng
dc.subject.otherModular formseng
dc.subject.otherMaster's thesiseng
dc.titleFermat’s Last Theorem on totally real fieldsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_abdu_parveen_habib_ullah.pdfMemòria554.67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons