Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/202092
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDieulefait, L. V. (Luis Victor)-
dc.contributor.authorGuiot Cusidó, Miquel-
dc.date.accessioned2023-09-21T09:10:18Z-
dc.date.available2023-09-21T09:10:18Z-
dc.date.issued2023-06-28-
dc.identifier.urihttps://hdl.handle.net/2445/202092-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Luis Victor Dieulefaitca
dc.description.abstract[en] The aim of this project is to study a theorem of Ribet stating that the images of the Galois representations attached to modular forms without Complex Multiplication are large for almost every prime. Firstly, the needed background is introduced in the form of some definitions and basic properties of modular forms and Galois representations. Later, the subgroup classification of general linear groups over finite fields is presented, as well as other useful results from group theory. Finally, Ribet’s theorem is stated and proved using all the tools from algebraic number theory and group theory developed in the previous chapters.ca
dc.format.extent64 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Miquel Guiot Cusidó, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationFormes modularscat
dc.subject.classificationTeoria de Galoiscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherModular formseng
dc.subject.otherGalois theoryeng
dc.subject.otherMaster's thesiseng
dc.titleLarge images for Galois representations attached to generic modular formsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_miquel_guiot_cusido.pdfMemòria608.16 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons