Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/202122
Title: | Special values of triple-product -adic L-functions and non-crystalline diagonal classes |
Author: | Gatti, Francesca Guitart Morales, Xavier Masdeu Sabaté, Marc Rotger, Víctor |
Keywords: | Funcions L Anàlisi p-àdica L-functions p-adic analysis |
Issue Date: | 2021 |
Publisher: | Société Arithmétique de Bordeaux and Centre Mersenne |
Abstract: | The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)$ associated to a triple of modular forms $(f, g, h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f \otimes g \otimes h, s)$ (which typically has sign +1$)$ does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E / \mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)(2,1,1)$ is either 0 (when the order of vanishing of the complex $L$-function is $>2$ ) or related to logarithms of global points on $E$ and a certain Gross-Stark unit associated to $g$ (when the order of vanishing is exactly 2). We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $E_p^g(\mathbf{f}, \mathbf{g}, \mathbf{h})(2,1,1)$ in the case where $L(f \otimes g \otimes h, 1) \neq 0$. |
Note: | Reproducció del document publicat a: https://doi.org/10.5802/jtnb.1179 |
It is part of: | Journal de Théorie des Nombres de Bordeaux, 2021, vol. 33, p. 809-834 |
URI: | https://hdl.handle.net/2445/202122 |
Related resource: | https://doi.org/10.5802/jtnb.1179 |
ISSN: | 1246-7405 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
720804.pdf | 398.61 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License