Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/202122
Title: Special values of triple-product -adic L-functions and non-crystalline diagonal classes
Author: Gatti, Francesca
Guitart Morales, Xavier
Masdeu Sabaté, Marc
Rotger, Víctor
Keywords: Funcions L
Anàlisi p-àdica
L-functions
p-adic analysis
Issue Date: 2021
Publisher: Société Arithmétique de Bordeaux and Centre Mersenne
Abstract: The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)$ associated to a triple of modular forms $(f, g, h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f \otimes g \otimes h, s)$ (which typically has sign +1$)$ does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E / \mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)(2,1,1)$ is either 0 (when the order of vanishing of the complex $L$-function is $>2$ ) or related to logarithms of global points on $E$ and a certain Gross-Stark unit associated to $g$ (when the order of vanishing is exactly 2). We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $E_p^g(\mathbf{f}, \mathbf{g}, \mathbf{h})(2,1,1)$ in the case where $L(f \otimes g \otimes h, 1) \neq 0$.
Note: Reproducció del document publicat a: https://doi.org/10.5802/jtnb.1179
It is part of: Journal de Théorie des Nombres de Bordeaux, 2021, vol. 33, p. 809-834
URI: https://hdl.handle.net/2445/202122
Related resource: https://doi.org/10.5802/jtnb.1179
ISSN: 1246-7405
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
720804.pdf398.61 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons