Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/202966
Title: El problema de Yamabe
Author: Domingo Pasarin, Joan
Director/Tutor: Ros, Xavier
Keywords: Equacions en derivades parcials
Treballs de fi de grau
Equacions diferencials el·líptiques
Varietats (Matemàtica)
Geometria de Riemann
Partial differential equations
Bachelor's theses
Elliptic differential equations
Manifolds (Mathematics)
Riemannian geometry
Issue Date: 6-Jun-2023
Abstract: [en] Posed by Hidehiko Yamabe in 1960, the Yamabe problem asks whether it is possible to deform the metric of a given riemannian manifold so that its scalar curvature becomes constant. This problem can be reformulated in terms of a partial differential equation which makes it interesting from an analytical point of view. In this work we aim to study the Yamabe problem in a variational way in order to find a solution when the scalar curvature is non-positive. To do so, we study Sobolev spaces and the critical value of the Rellich-Kondrakov embedding theorem toghether with its close connection with the solution of the Yamabe equation.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Xavier Ros
URI: https://hdl.handle.net/2445/202966
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_joan_domingo_pasarin.pdfMemòria666.3 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons