Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/203293
Title: Construcció de polı́gons regulars sobre la lemniscata
Author: Soler Terricabras, Toni
Director/Tutor: Crespo Vicente, Teresa
Keywords: Teoria de Galois
Cossos algebraics
Geometria algebraica aritmètica
Funcions el·líptiques
Treballs de fi de grau
Galois theory
Algebraic fields
Arithmetical algebraic geometry
Elliptic functions
Bachelor's theses
Issue Date: 13-Jun-2023
Abstract: [en] The main goal of this study is to set a theoretical framework that allows us to determine in general sense which regular polygons can be constructed with ruler and compass on the lemniscate. To accomplish this, we compute the Galois groups arising from the division points of the curve. It is through the construction of lemnatomic extensions, analogous to cyclotomic extensions associated with the circle, that the constructibility of the desired polygons is determined. The present study puts forth two complementary formulations to address this problem: the first one, based on a purely geometric foundation, and the second one, with a broader approach incorporating the use of elliptic functions and elliptic curves.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Teresa Crespo Vicente
URI: https://hdl.handle.net/2445/203293
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_soler_terricabras_toni.pdfMemòria815.37 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons