Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/203293
Title: | Construcció de polı́gons regulars sobre la lemniscata |
Author: | Soler Terricabras, Toni |
Director/Tutor: | Crespo Vicente, Teresa |
Keywords: | Teoria de Galois Cossos algebraics Geometria algebraica aritmètica Funcions el·líptiques Treballs de fi de grau Galois theory Algebraic fields Arithmetical algebraic geometry Elliptic functions Bachelor's theses |
Issue Date: | 13-Jun-2023 |
Abstract: | [en] The main goal of this study is to set a theoretical framework that allows us to determine in general sense which regular polygons can be constructed with ruler and compass on the lemniscate. To accomplish this, we compute the Galois groups arising from the division points of the curve. It is through the construction of lemnatomic extensions, analogous to cyclotomic extensions associated with the circle, that the constructibility of the desired polygons is determined. The present study puts forth two complementary formulations to address this problem: the first one, based on a purely geometric foundation, and the second one, with a broader approach incorporating the use of elliptic functions and elliptic curves. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Teresa Crespo Vicente |
URI: | https://hdl.handle.net/2445/203293 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_soler_terricabras_toni.pdf | Memòria | 815.37 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License