Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarchesi, Simone-
dc.contributor.authorVallès, Jean-
dc.date.accessioned2024-02-23T10:24:39Z-
dc.date.available2024-02-23T10:24:39Z-
dc.date.issued2023-05-02-
dc.identifier.issn2491-6765-
dc.identifier.urihttps://hdl.handle.net/2445/208003-
dc.description.abstractIn this work we study line arrangements consisting in lines passing through three non-aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement, which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements, we provide conditions that ensure their freeness. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not.-
dc.format.extent20 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherEpisciences-
dc.relation.isformatofReproducció del document publicat a:-
dc.relation.ispartofEpijournal de Geometrie Algebrique, 2023, vol. 7-
dc.rightscc-by-sa (c) Marchesi, S. et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationGeometria discreta-
dc.subject.classificationÀlgebra homològica-
dc.subject.classificationSingularitats (Matemàtica)-
dc.subject.otherDiscrete geometry-
dc.subject.otherHomological algebra-
dc.subject.otherSingularities (Mathematics)-
dc.titleTriangular arrangements on the projective plane-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec741086-
dc.date.updated2024-02-23T10:24:39Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
837785.pdf428.58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons