Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Zuoxin-
dc.contributor.authorSamperi, Mario-
dc.contributor.authorSantu, Lea-
dc.contributor.authorDizon, Glenieliz-
dc.contributor.authorAboarkaba, Shereen-
dc.contributor.authorLimón, David-
dc.contributor.authorTuck, Christopher-
dc.contributor.authorPérez García, M. Lluïsa (Maria Lluïsa)-
dc.contributor.authorIrvine, Derek J.-
dc.contributor.authorAmabilino, David B.-
dc.contributor.authorWildman, Ricky-
dc.date.accessioned2024-02-27T07:45:27Z-
dc.date.available2024-02-27T07:45:27Z-
dc.date.issued2021-
dc.identifier.issn0264-1275-
dc.identifier.urihttps://hdl.handle.net/2445/208063-
dc.description.abstract<p>The variety of UV-curable monomers for 3D printing is limited by a requirement for rapid curing after</p><p>each sweep depositing a layer. This study proposes to trigger supramolecular self-assembly during the</p><p>process by a gemini imidazolium-based low-molecular-weight gelator, allowing printing of certain</p><p>monomers. The as-printed hydrogel structures were supported by a gelator network immobilising monomer:</p><p>water solutions. A thixotropic hydrogel was formed with a recovery time of <50 s, storage modulus =</p><p>8.1 kPa and yield stress = 18 Pa, processable using material extrusion 3D printing. Material extrusion 3D</p><p>printed objects are usually highly anisotropic, but in this case the gelator network improved the isotropy</p><p>by subverting the usual layer-by-layer curing strategy. The monomer in all printed layers was cured</p><p>simultaneously during post-processing to form a continuous polymeric network. The two networks then</p><p>physically interpenetrate to enhance mechanical performance. The double network hydrogels fabricated</p><p>with layers cured simultaneously showed 62–147% increases in tensile properties compared to layer-bylayer</p><p>cured hydrogels. The results demonstrated excellent inter- and intra-layered coalescence.</p>-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.matdes.2021.109792-
dc.relation.ispartofMaterials & Design, 2021, vol. 206, p. 109792-
dc.relation.urihttps://doi.org/10.1016/j.matdes.2021.109792-
dc.rightscc-by (c) Zhou, Z. et al., 2021-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica)-
dc.subject.classificationAgents antiinflamatoris-
dc.subject.classificationQuímica supramolecular-
dc.subject.otherAntiinflammatory agents-
dc.subject.otherSupramolecular chemistry-
dc.titleAn Imidazolium-Based Supramolecular Gelator Enhancing Interlayer Adhesion in 3D Printed Dual Network Hydrogels-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec713489-
dc.date.updated2024-02-27T07:45:27Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica)

Files in This Item:
File Description SizeFormat 
240829.pdf3.49 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons