Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208110
Title: Strong approximations of Brownian sheet by uniform transport processes.
Author: Bardina i Simorra, Xavier
Ferrante, Marco
Rovira Escofet, Carles
Keywords: Processos de difusió
Teoremes de límit (Teoria de probabilitats)
Processos gaussians
Diffusion processes
Limit theorems (Probability theory)
Gaussian processes
Issue Date: 12-Sep-2019
Publisher: Springer
Abstract: Many years ago, Griego, Heath and Ruiz-Moncayo proved that it is possible to define realizations of a sequence of uniform transport processes that converges almost surely to the standard Brownian motion, uniformly on the unit time interval. In this paper we extend their results to the multi parameter case. We begin constructing a family of processes, starting from a set of independent standard Poisson processes, that has realizations that converge almost surely to the Brownian sheet, uniformly on the unit square. At the end the extension to the d-parameter Wiener processes is presented.
Note: Versió postprint del document publicat a: https://doi.org/10.1007/s13348-019-00263-4
It is part of: Collectanea Mathematica, 2019, vol. 71, p. 319-329
URI: https://hdl.handle.net/2445/208110
Related resource: https://doi.org/10.1007/s13348-019-00263-4
ISSN: 0010-0757
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
224208.pdf472.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.