Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/208110
Title: | Strong approximations of Brownian sheet by uniform transport processes. |
Author: | Bardina i Simorra, Xavier Ferrante, Marco Rovira Escofet, Carles |
Keywords: | Processos de difusió Teoremes de límit (Teoria de probabilitats) Processos gaussians Diffusion processes Limit theorems (Probability theory) Gaussian processes |
Issue Date: | 12-Sep-2019 |
Publisher: | Springer |
Abstract: | Many years ago, Griego, Heath and Ruiz-Moncayo proved that it is possible to define realizations of a sequence of uniform transport processes that converges almost surely to the standard Brownian motion, uniformly on the unit time interval. In this paper we extend their results to the multi parameter case. We begin constructing a family of processes, starting from a set of independent standard Poisson processes, that has realizations that converge almost surely to the Brownian sheet, uniformly on the unit square. At the end the extension to the d-parameter Wiener processes is presented. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1007/s13348-019-00263-4 |
It is part of: | Collectanea Mathematica, 2019, vol. 71, p. 319-329 |
URI: | https://hdl.handle.net/2445/208110 |
Related resource: | https://doi.org/10.1007/s13348-019-00263-4 |
ISSN: | 0010-0757 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
224208.pdf | 472.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.