Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208182
Title: Modular abelian varieties over number fields
Author: Guitart Morales, Xavier
Quer Bosor, Jordi
Keywords: Funcions holomorfes
Varietats abelianes
Holomorphic functions
Abelian varieties
Issue Date: 2014
Publisher: Canadian Mathematical Society.
Abstract: The main result of this paper is a characterization of the abelian varieties $B / K$ defined over Galois number fields with the property that the $L$-function $L(B / K ; s)$ is a product of $L$-functions of non-CM newforms over $\mathbb{Q}$ for congruence subgroups of the form $\Gamma_1(N)$. The characterization involves the structure of $\operatorname{End}(B)$, isogenies between the Galois conjugates of $B$, and a Galois cohomology class attached to $B / K$. We call the varieties having this property strongly modular. The last section is devoted to the study of a family of abelian surfaces with quaternionic multiplication. As an illustration of the ways in which the general results of the paper can be applied we prove the strong modularity of some particular abelian surfaces belonging to that family, and we show how to find nontrivial examples of strongly modular varieties by twisting.
Note: Versió postprint del document publicat a: https://doi.org/10.4153/CJM-2012-040-2
It is part of: Canadian Journal of Mathematics-Journal Canadien de Mathematiques, 2014, vol. 66, num.1, p. 170-196
URI: https://hdl.handle.net/2445/208182
Related resource: https://doi.org/10.4153/CJM-2012-040-2
ISSN: 0008-414X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
182133.pdf463.24 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons