Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPadrol Sureda, Arnau-
dc.contributor.authorPhilippe, Eva-
dc.contributor.authorSantos Leal, Francisco-
dc.date.accessioned2024-03-07T11:13:29Z-
dc.date.available2024-03-07T11:13:29Z-
dc.date.issued2023-07-01-
dc.identifier.issn0025-5831-
dc.identifier.urihttps://hdl.handle.net/2445/208500-
dc.description.abstractWe show that for fixed $d>3$ and $n$ growing to infinity there are at least $(n !)^{d-2 \pm o(1)}$ different labeled combinatorial types of $d$-polytopes with $n$ vertices. This is about the square of the previous best lower bounds. As an intermediate step, we show that certain neighborly polytopes (such as particular realizations of cyclic polytopes) have at least $(n !)^{\lfloor(d-1) / 2\rfloor \pm o(1)}$ regular triangulations.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4-
dc.relation.ispartofMathematische Annalen, 2023-
dc.relation.urihttps://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4-
dc.rightscc-by (c) Arnau Padrol et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationPolitops-
dc.subject.classificationGeometria convexa-
dc.subject.otherPolytopes-
dc.subject.otherConvex geometry-
dc.titleMany regular triangulations and many polytopes-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec742474-
dc.date.updated2024-03-07T11:13:30Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
842208.pdf408.02 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons