Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/24545
Title: The groups of Poincaré and Galilei in arbitrary dimensional spaces
Author: Elizalde, E. (Emili), 1950-
Gomis Torné, Joaquim
Keywords: Àlgebres de Lie
Teoria quàntica de camps
Dinàmica
Lie algebras
Quantum field theory
Dynamics
Issue Date: 1978
Publisher: American Institute of Physics
Abstract: In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.
Note: Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.523877
It is part of: Journal of Mathematical Physics, 1978, vol. 19, p. 1790
URI: https://hdl.handle.net/2445/24545
Related resource: http://dx.doi.org/10.1063/1.523877
ISSN: 0022-2488
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
10127.pdf198.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.