Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/49710
Title: | Theta-duality on Prym varieties and a Torelli Theorem |
Author: | Lahoz Vilalta, Martí Naranjo del Val, Juan Carlos |
Keywords: | Varietats abelianes Corbes Geometria algebraica Abelian varieties Curves Algebraic geometry |
Issue Date: | 9-Jan-2013 |
Publisher: | American Mathematical Society (AMS) |
Abstract: | Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve. |
Note: | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2013-05675-9 |
It is part of: | Transactions of the American Mathematical Society, 2013 |
URI: | https://hdl.handle.net/2445/49710 |
Related resource: | http://dx.doi.org/10.1090/S0002-9947-2013-05675-9 |
ISSN: | 0002-9947 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
598730.pdf | 301.28 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.