Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/55628
Title: Compound Specific Isotope Analysis ((13)C, (37)Cl,( 2)H) to trace induced attenuation of chlorinated organic contaminants in groundwater
Author: Audí Miró, Carme
Director/Tutor: Otero Pérez, Neus
Soler i Gil, Albert
Keywords: Contaminació de l'aigua
Depuració de residus industrials
Depuració d'aigües residuals
Hidrologia d'aigües subterrànies
Isotòps
Water pollution
Purification of factory and trade waste
Purification of sewage
Groundwater hydrology
Isotopes
Issue Date: 25-Apr-2014
Publisher: Universitat de Barcelona
Abstract: [cat] El chloroform (CF), el tetracloroetè (PCE) i el tricloretè (TCE) són hidrocarburs clor-alifàtics densos usats extensament com a solvents industrials. Aquests compostos s’han alliberat al medi degut a un tractament inadequat dels seus residus. En aquesta tesi, l’efecte d’una barrera permeable reactiva de ferro zero valent (BPR-FZV) instal•lada en un emplaçament contaminat majoritàriament amb PCE, TCE i cis-dicloretè (cis-DCE, subproducte de TCE) ha estat avaluada. A més a més, s’ha proposat i desenvolupat una nova estratègia per a degradar el CF, el qual és un compost recalcitrant, consistent en la inducció de la hidròlisi alcalina del CF mitjançant residus de construcció basats en formigó. L’ànàlisi isotòpic de compost específic (AICE) és una eina valuosa per al monitoreig d’un sistema de tractament medi ambiental, basant-se en el fraccionament isotòpic d’un element durant les reaccions de transformació. L’objectiu general d’aquesta tesi és l’ús de l’anàlisi isotòpic de compost específic de 13C, 37Cl i 2H com una eina per a controlar els dos processos d’atenuació 1) la degradació dels eten-clorats mitjançant una BPR-FZV instal•lada en el camp; i, 2) la nova tècnica de remediació de CF proposada basada en l’ús de residus reciclats de la construcció per tal d’induir la hidròlisi alcalina del CF. En general, mitjançant la combinació dels isòtops de C, Cl i H, aquesta tesi aporta noves eines per discriminar la degradació dels compostos organoclorats d’estudi mitjançant FZV, respecte la biodegradació en el camp, així com també per a identificar fonts de contaminació d’origen industrial o de productes formats, entre d’altres aportacions. A més a més, el nou mètode proposat per a degradar el CF basat en la seva hidròlisi alcalina mitjançant l’ús de residus de construcció reciclats ha demostrat ser eficient en la degradació d’aquest contaminant, així com també, mitjançant l’ús de isòtops de carboni, ha demostrat funcionar en experiments pilot monitorejats a escala de camp.
[eng] Chloroform (CF), tetrachloroethene (PCE) and trichloroethene (TCE) are dense chloro-aliphatic hydrocarbons (CAH) extensively used as industrial solvents. These compounds have been largely released to the environment due to poor waste management. In this thesis, the effect of a ZVI-PRB installed at a field site contaminated mainly with PCE, TCE and cis-DCE was evaluated. Moreover, a novel strategy to degrade the recalcitrant CF -alkaline hydrolysis induced by concrete-based recycled construction wastes- was proposed and developed in order to test its efficiency in degrading this pollutant. Compound specific isotope analysis (CSIA) is a valuable tool for monitoring an environmental treatment in the field, based on the isotope fractionation of an element during transformation reactions. Therefore, the general aim of this thesis is to use compound specific isotope analysis of 13C, 37Cl and 2H as a tool to assess both induced attenuation processes 1) chlorinated ethenes degradation by a ZVI-PRB installed at the field sited; and, 2) the proposed new remediation technique based on the use of concrete-based recycled construction wastes to degrade chloroform (CF) by alkaline hydrolysis applied at a site contaminated by this pollutant. First, laboratory experiments were conducted to study both ZVI and concrete effects on the chlorinated ethenes and the chloroform, respectively. ZVI experiments yielded carbon isotope fractionation values of the chlorinated ethenes degradation by the specific ZVI used in the field application, as well as, the first chlorine isotope fractionation values of TCE and cis-DCE associated to this reaction. Two promising approaches to discriminate the abiotic ZVI degradation versus biotic degradation present at the field site were brought forward 1) the dual isotope C-Cl approach, which distinguished slopes 4 times lower than for biodegradation of cis-DCE by the commercially available Dehalococcoides-containing culture mixed culture KB-1; and 2) the product-specific carbon isotope fractionation that showed a 10‰ difference between those products coming from β-dichloroelimination and hydrogenolysis reactions. Concrete experiments with CF achieved a 95% CF degradation after 28 d, accompanied by a significant carbon isotope fractionation. The carbon isotopic fractionation associated with alkaline hydrolysis of CF was -53±3‰. The obtained laboratory data permitted the assessment of the respective induced degradation treatments applied at the field site. At the site with the ZVI-PRB treatment, both, occurrence of biodegradation and degradation by ZVI-PRB were evidenced by means of detected metabolites and 13C data, with quantitative estimates of ZVI-PRB efficiency of less than 10% and 2% for PCE and cis-DCE, respectively. Dual element 13C-37Cl isotope plots confirmed that the effect of the ZVI-PRB was masked by biodegradation. Based on carbon isotopes data, 49% and almost 100% of PCE and TCE, respectively, were estimated to be removed by biodegradation. Finally the combination of 2H with 13C and 37Cl discriminated two different sources of contamination spilled from the same industry. This indicates the potential of δ2H to discriminate if a compound is of industrial origin, or whether it is formed as a daughter product during degradation. Regarding CF hydrolysis, field-scale pilot experiments were used to test the efficiency of the concrete-base recycled construction wastes to induce alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in the field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits.
URI: https://hdl.handle.net/2445/55628
Appears in Collections:Tesis Doctorals - Departament - Cristal·lografia, Mineralogia i Dipòsits Minerals

Files in This Item:
File Description SizeFormat 
CAM_PhD_THESIS.pdf3.18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.