Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/63023
Title: On the local and global phase portrait of the 1-dimensional complex equation $z{\dot}= f (z)$
Author: Song, Jieyao
Director/Tutor: Fontich, Ernest, 1955-
Jarque i Ribera, Xavier
Keywords: Equacions diferencials ordinàries
Varietats (Matemàtica)
Treballs de fi de màster
Ordinary differential equations
Manifolds (Mathematics)
Master's theses
Issue Date: 13-Sep-2014
Abstract: This work consists of studying the complex first order differential equation $z{\dot} = \dfrac{dz}{dt}=f(z),\hspace{2cm} z \in\mathbb{C},t\in\mathbb{R}$ where $f$ is an analytic function of $C$ except, possibly, at isolated singularities. This is a rather general family of complex functions that includes polynomial, rational, holomorphic and entire functions, and functions with isolated essential singularities.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ernest Fontich i Xavier Jarque
URI: https://hdl.handle.net/2445/63023
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria4.86 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons