Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/63023
Title: | On the local and global phase portrait of the 1-dimensional complex equation $z{\dot}= f (z)$ |
Author: | Song, Jieyao |
Director/Tutor: | Fontich, Ernest, 1955- Jarque i Ribera, Xavier |
Keywords: | Equacions diferencials ordinàries Varietats (Matemàtica) Treballs de fi de màster Ordinary differential equations Manifolds (Mathematics) Master's theses |
Issue Date: | 13-Sep-2014 |
Abstract: | This work consists of studying the complex first order differential equation $z{\dot} = \dfrac{dz}{dt}=f(z),\hspace{2cm} z \in\mathbb{C},t\in\mathbb{R}$ where $f$ is an analytic function of $C$ except, possibly, at isolated singularities. This is a rather general family of complex functions that includes polynomial, rational, holomorphic and entire functions, and functions with isolated essential singularities. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ernest Fontich i Xavier Jarque |
URI: | https://hdl.handle.net/2445/63023 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | Memòria | 4.86 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License