Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/65092
Title: Probing gauge theories: Exact results and holographic computations
Author: Garolera Huguet, Blai
Director/Tutor: Fiol Núñez, Bartomeu
Verdaguer Oms, Enric, 1950-
Keywords: Models de corda
Teoria quàntica de camps
Gravitació
Mecànica de matrius
String models
Quantum field theory
Gravitation
Matrix mechanics
Issue Date: 27-Feb-2015
Publisher: Universitat de Barcelona
Abstract: [cat] Durant les darreres dues dècades ha aparegut un nou paradigma que permet reformular completament certes teories quàntiques de camps i ens aporta una nova eina que ens permet realitzar càlculs analítics en règims fins ara inaccessibles. Aquest nou paradigma sorgeix del descobriment d’una correspondència o dualitat exacta entre dues teories aparentment molt diferents. Per una banda de la dualitat tenim certes teories quàntiques de camps, com per exemple les denominades teories de Yang-Mills, similars a les teories del Model Estàndard. Aquestes descriuen partícules interactuant en un espai pla d-dimensional sense gravetat. A l’altra banda de la dualitat trobem teories que inclouen la gravetat, com ara la Teoria de la Relativitat General d’Einstein o les seves generalitzacions en el marc de la Teoria de Cordes. Aquestes teories de gravetat estan definides sobre espais de dimensió més alta que d, i és per això que aquesta correspondència rep sovint l’adjectiu de “hologràfica”. Depenent del context, aquesta rep el nom de dualitat gauge/gravetat, dualitat gauge/corda o AdS/CFT (acrònim anglès per la correspondència particular entre teoria de cordes a espais d’Anti-de Sitter i teories de camps conformes). Fins ara, una de les correspondències més ben estudiades i que comprenem millor (i sobre la qual es centra la present tesi) és la dualitat entre la teoria quatre-dimensional N = 4 super Yang-Mills amb grup de gauge SU (N ) i teoria de cordes tipus IIB en un espai deu-dimensional AdS5 × S5 . Aquesta tesi presenta una recopilació de quatre articles publicats en revistes científiques d’alt impacte, tots ells en el camp de la correspondència AdS/CFT i centrats en l’estudi de teories gauge supersimètriques mitjançant la inserció de partícules de prova infinitament massives, seguint trajectòries determinades i transformant sota diverses representacions del grup de gauge. Cadascun d’aquests treballs aporta un pas endavant en el desenvolupament de noves estratègies per calcular correccions més enllà del primer ordre així com en l’ús de resultats exactes accessibles a la Teoria Quàntica de Camps per tal de derivar expressions exactes d’altres observables rellevants de la teoria i realitzar prediccions de Teoria de Cordes.
[eng] The holographic duality between gauge theories and string theories has opened a new door to access the strongly coupled regime of quantum field theories and offers, at the same time, a completely new way to understand the elusive nature of quantum gravity and the non-perturbative regime of string theory. After almost two decades of research, the current status of the correspondence is that of a solid conjecture that has passed a great number of nontrivial tests, to the point that it is generally believed to be true. The present thesis includes a collection of four papers published in peer-reviewed scientific journals, all of them in the context of the AdS/CFT correspondence and with a particular focus on studying gauge theories by inserting heavy external probes, following prescribed trajectories and transforming under various representations of the gauge group. Each of these works reports a little step forward in the development of new strategies for capturing correc- tions beyond the leading order as well as in using exact results available in quantum field theory in order to derive exact expressions for other relevant observables and new non-trivial string theory predictions. In chapters 2 and 3 we use the AdS/CFT correspondence in order to compute several observables of N = 4 SU (N ) super Yang-Mills theory related with the presence of an infinitely heavy particle transforming in the k-symmetric or the k-antisymmetric representations of the gauge group and following particular trajectories. This is achieved by means of adding certain D-brane probes with electric fluxes turned on and reaching the boundary of AdS on the very trajectories followed by the dual particles. For the antisymmetric case we consider D5-branes reaching the boundary at arbitrary time-like trajectories, while for the symmetric case, we consider a D3-brane fully embedded in AdS5 that reaches the boundary at either a straight line or a hyperbola. This generalizes previous computations that used fundamental strings, which are claimed to be dual to infinitely heavy point particles transforming in the fundamental. Besides the intrinsic interest of these generalizations, our main motivation in studying them is that, as it happens in the computation of certain Wilson loops, the results obtained with D3-branes give an all- orders series of corrections in 1/N to the leading order result for the fundamental representation obtained by means of fundamental strings. It is important to remark, one more time, that we can not really extrapolate up to k = 1, since this is beyond the regime of validity of the supergravity approximation. Therefore, it is not justified a priori to set k = 1 in our results. Nevertheless, when compared with the exact results available, we find that the D3-brane computation reproduces the correct result in the large N , λ limit and with k = 1. This better than expected performance suggests the exciting possibility that certain D3-branes with electric fluxes might capture correctly all the 1/N corrections, but it is fair to say that we still lack of a precise string-theoretic argument to prove this.
URI: https://hdl.handle.net/2445/65092
Appears in Collections:Tesis Doctorals - Departament - Física Fonamental

Files in This Item:
File Description SizeFormat 
BGH_PhD_THESIS.pdf2.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.