Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/68878
Title: | ChainRank, a chain prioritisation method for contextualisation of biological networks |
Author: | Tényi, Ákos Atauri Carulla, Ramón de Gomez Cabrero, David Cano Franco, Isaac Clarke, Kim Falciani, Francesco Cascante i Serratosa, Marta Roca, Josep Maier, Dieter |
Keywords: | Bioinformàtica Biologia computacional Proteïnes Sistemes biològics Bioinformatics Computational biology Proteins Biological systems |
Issue Date: | 5-Jan-2016 |
Publisher: | BioMed Central |
Abstract: | Advances in high throughput technologies and growth of biomedical knowledge have contributed to an exponential increase in associative data. These data can be represented in the form of complex networks of biological associations, which are suitable for systems analyses. However, these networks usually lack both, context specificity in time and space as well as the distinctive borders, which are usually assigned in the classical pathway view of molecular events (e.g. signal transduction). This complexity and high interconnectedness call for automated techniques that can identify smaller targeted subnetworks specific to a given research context (e.g. a disease scenario). |
Note: | Reproducció del document publicat a: http://dx.doi.org/10.1186/s12859-015-0864-x |
It is part of: | Bmc Bioinformatics, 2016, vol. 17, num. 1, p. 1-17 |
URI: | https://hdl.handle.net/2445/68878 |
Related resource: | http://dx.doi.org/10.1186/s12859-015-0864-x |
ISSN: | 1471-2105 |
Appears in Collections: | Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer) Articles publicats en revistes (Bioquímica i Biomedicina Molecular) Publicacions de projectes de recerca finançats per la UE |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
656269.pdf | 2.52 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License