Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/174181
Title: | Retrieval of germinal zone neural stem cells from the cerebrospinal fluid of premature infants with intraventricular hemorrhage |
Author: | Fernández Muñoz, Beatriz Rosell Valle, Cristina Ferrari, Daniela Alba Amador, Julia Montiel, Miguel Ángel Campos Cuerva, Rafael Lopez Navas, Luis Muñoz Escalona, María Martín López, María Profico, Daniela Celeste Blanco, Manuel Francisco Giorgetti, Alessandra González Muñoz, Elena Márquez Rivas, Javier Sánchez Pernaute, Rosario |
Keywords: | Líquid cefalorraquidi Infants prematurs Neurobiologia del desenvolupament Cerebrospinal fluid Premature infants Developmental neurobiology |
Issue Date: | 30-May-2020 |
Publisher: | Wiley |
Abstract: | Intraventricular hemorrhage is a common cause of morbidity and mortality in premature infants. The rupture of the germinal zone into the ventricles entails loss of neural stem cells and disturbs the normal cytoarchitecture of the region, compromising late neurogliogenesis. Here we demonstrate that neural stem cells can be easily and robustly isolated from the hemorrhagic cerebrospinal fluid obtained during therapeutic neuroendoscopic lavage in preterm infants with severe intraventricular hemorrhage. Our analyses demonstrate that these neural stem cells, although similar to human fetal cell lines, display distinctive hallmarks related to their regional and developmental origin in the germinal zone of the ventral forebrain, the ganglionic eminences that give rise to interneurons and oligodendrocytes. These cells can be expanded, cryopreserved, and differentiated in vitro and in vivo in the brain of nude mice and show no sign of tumoral transformation 6 months after transplantation. This novel class of neural stem cells poses no ethical concerns, as the fluid is usually discarded, and could be useful for the development of an autologous therapy for preterm infants, aiming to restore late neurogliogenesis and attenuate neurocognitive deficits. Furthermore, these cells represent a valuable tool for the study of the final stages of human brain development and germinal zone biology. |
Note: | Reproducció del document publicat a: https://doi.org/10.1002/sctm.19-0323 |
It is part of: | STEM CELLS Translational Medicine, 2020, vol. 9, num. 9, p. 1085-1101 |
URI: | https://hdl.handle.net/2445/174181 |
Related resource: | https://doi.org/10.1002/sctm.19-0323 |
Appears in Collections: | Articles publicats en revistes (Patologia i Terapèutica Experimental) Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
sctm.19-0323.pdf | 14.23 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License