Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/174396
Title: Functional informed genome-wide interaction analysis of body mass index, diabetes and colorectal cancer risk
Author: Xia, Zhiyu
Su, Yu‐Ru
Petersen, Paneen
Qi, Lihong
Kim, Andre E.
Figueiredo, Jane C.
Lin, Yi
Nan, Hongmei
Sakoda, Lori C.
Albanes, Demetrius
Berndt, Sonja I.
Bézieau, Stéphane
Bien, Stephanie A.
Buchanan, Daniel D.
Casey, Graham
Chan, Andrew T.
Conti, David V.
Drew, David A.
Gallinger, Steven
Gauderman, W. James
Giles, Graham G.
Gruber, Stephen B.
Gunter, Marc J.
Hoffmeister, Michael
Jenkins, Mark A.
Joshi, Amit D.
Marchand, Loïc Le
Lewinger, Juan P.
Li, Li
Lindor, Noralane M.
Moreno Aguado, Víctor
Murphy, Neil
Nassir, Rami
Newcomb, Polly A.
Ogino, Shuji
Rennert, Gad
Song, Mingyang
Wang, Xiaoliang
Wolk, Alicja
Woods, Michael O.
Brenner, Hermann
White, Emily
Slattery, Martha L.
Giovannucci, Edward L.
Chang-Claude, Jenny
Pharoah, Paul D. P.
Hsu, Li
Campbell, Peter T.
Peters, Ulrike
Keywords: Càncer colorectal
Pes corporal
Diabetis
Colorectal cancer
Body weight
Diabetes
Issue Date: 24-Mar-2020
Publisher: John Wiley & Sons Ltd.
Abstract: Background: Body mass index (BMI) and diabetes are established risk factors for colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin resistance and glucose homeostasis). Identification of interactions between variation in genes and these metabolic risk factors may identify novel biologic insights into CRC etiology. Methods: To improve statistical power and interpretation for gene-environment interaction (G × E) testing, we tested genetic variants that regulate expression of a gene together for interaction with BMI (kg/m2 ) and diabetes on CRC risk among 26 017 cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of gene expression data from colon tissue generated in the Genotype-Tissue Expression Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly measure the G × E interaction in a gene by partitioning the interactions into the predicted gene expression levels (fixed effects), and residual G × E effects (random effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by sex. We used false discovery rates to account for multiple comparisons and reported all results with FDR <0.2. Results: Among 4839 genes tested, genetically predicted expressions of FOXA1 (P = 3.15 × 10-5 ), PSMC5 (P = 4.51 × 10-4 ) and CD33 (P = 2.71 × 10-4 ) modified the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10-5 ) and SCN1B (P = 2.76 × 10-4 ) modified the association of BMI on CRC risk for women; and PTPN2 modified the association between diabetes and CRC risk in both sexes (P = 2.31 × 10-5 ). Conclusions: Aggregating G × E interactions and incorporating functional information, we discovered novel genes that may interact with BMI and diabetes on CRC risk.
Note: Reproducció del document publicat a: https://doi.org/10.1002/cam4.2971
It is part of: Cancer Medicine, 2020, vol. 9, num. 10, p. 3563-3573
URI: https://hdl.handle.net/2445/174396
Related resource: https://doi.org/10.1002/cam4.2971
Appears in Collections:Articles publicats en revistes (Ciències Clíniques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
cam4.2971.pdf254.06 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons