Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/174707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenden, Michael P.-
dc.contributor.authorWang, Dennis-
dc.contributor.authorMason, Mike J.-
dc.contributor.authorSzalai, Bence-
dc.contributor.authorBulusu, Krishna C.-
dc.contributor.authorGuan, Yuanfang-
dc.contributor.authorYu, Thomas-
dc.contributor.authorKang, Jaewoo-
dc.contributor.authorJeon, Minji-
dc.contributor.authorWolfinger, Russ-
dc.contributor.authorNguyen, Tin-
dc.contributor.authorZaslavskiy, Mikhail-
dc.contributor.authorJang, In Sock-
dc.contributor.authorGhazoui, Zara-
dc.contributor.authorAhsen, Mehmet Eren-
dc.contributor.authorVogel, Robert-
dc.contributor.authorNeto, Elias Chaibub-
dc.contributor.authorNorman, Thea-
dc.contributor.authorTang, Eric K. Y.-
dc.contributor.authorGarnett, Mathew J.-
dc.contributor.authorVeroli, Giovanni Y. Di-
dc.contributor.authorFawell, Stephen-
dc.contributor.authorStolovitzky, Gustavo-
dc.contributor.authorGuinney, Justin-
dc.contributor.authorDry, Jonathan R.-
dc.contributor.authorSaez Rodríguez, Julio-
dc.contributor.authorPujana Genestar, M. Ángel-
dc.contributor.authorSerra-Musach, Jordi-
dc.contributor.authorAstraZeneca-Sanger Drug Combination DREAM Consortium-
dc.date.accessioned2021-03-08T15:16:54Z-
dc.date.available2021-03-08T15:16:54Z-
dc.date.issued2019-06-17-
dc.identifier.urihttps://hdl.handle.net/2445/174707-
dc.description.abstractThe effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Nature-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-019-09799-2-
dc.relation.ispartofNature Communications, 2019, vol. 10-
dc.relation.urihttps://doi.org/10.1038/s41467-019-09799-2-
dc.rightscc by (c) Menden et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationCàncer-
dc.subject.classificationFarmacogenètica-
dc.subject.otherCancer-
dc.subject.otherPharmacogenetics-
dc.titleCommunity assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2021-03-08T14:37:23Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/668858/EU//PrECISE-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/716063/EU//DrugComb-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid31209238-
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
s41467-019-09799-2.pdf1.61 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons