Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/187661
Title: | Simulation of physical systems with variants of the Interaction Network |
Author: | Córdoba Meneses, Alfons |
Director/Tutor: | Díaz Guilera, Albert Pujol Vila, Oriol |
Keywords: | Aprenentatge automàtic Sistemes complexos Xarxes neuronals (Informàtica) Treballs de fi de màster Cinemàtica Machine learning Complex systems Neural networks (Computer science) Master's theses Kinematics |
Issue Date: | 18-Jan-2021 |
Abstract: | [en] The aim of this thesis is to primarily learn to predict trajectories of physical systems by using Machine Learning. We have used the Interaction Network as a base model and introduced tweaks to its structure in the framework of Graph Networks in order to deal with systems without interaction, with force-based interactions and systems governed by the Vicsek model. We have been able to replicate very well systems without interaction and systems governed by a Vicsek model of infinite reach. However the results with force-based systems are mediocre because they need more trainable parameters and training data. The results for the Vicsek model with a finite radius of reach are the worst but we have learned the necessity and the methodology of introducing attention to the base model to deal with this class of problem. |
Note: | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Albert Díaz Guilera i Oriol Pujol Vila |
URI: | https://hdl.handle.net/2445/187661 |
Appears in Collections: | Programari - Treballs de l'alumnat Màster Oficial - Fonaments de la Ciència de Dades |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ModifiedInteractionNetworks-main.zip | Codi font | 4.15 MB | zip | View/Open |
tfm_cordoba_meneses_alfons.pdf | Memòria | 1.01 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License