Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/187661
Title: Simulation of physical systems with variants of the Interaction Network
Author: Córdoba Meneses, Alfons
Director/Tutor: Díaz Guilera, Albert
Pujol Vila, Oriol
Keywords: Aprenentatge automàtic
Sistemes complexos
Xarxes neuronals (Informàtica)
Treballs de fi de màster
Cinemàtica
Machine learning
Complex systems
Neural networks (Computer science)
Master's theses
Kinematics
Issue Date: 18-Jan-2021
Abstract: [en] The aim of this thesis is to primarily learn to predict trajectories of physical systems by using Machine Learning. We have used the Interaction Network as a base model and introduced tweaks to its structure in the framework of Graph Networks in order to deal with systems without interaction, with force-based interactions and systems governed by the Vicsek model. We have been able to replicate very well systems without interaction and systems governed by a Vicsek model of infinite reach. However the results with force-based systems are mediocre because they need more trainable parameters and training data. The results for the Vicsek model with a finite radius of reach are the worst but we have learned the necessity and the methodology of introducing attention to the base model to deal with this class of problem.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Albert Díaz Guilera i Oriol Pujol Vila
URI: https://hdl.handle.net/2445/187661
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
ModifiedInteractionNetworks-main.zipCodi font4.15 MBzipView/Open
tfm_cordoba_meneses_alfons.pdfMemòria1.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons