Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/202092
Title: | Large images for Galois representations attached to generic modular forms |
Author: | Guiot Cusidó, Miquel |
Director/Tutor: | Dieulefait, L. V. (Luis Victor) |
Keywords: | Formes modulars Teoria de Galois Treballs de fi de màster Modular forms Galois theory Master's thesis |
Issue Date: | 28-Jun-2023 |
Abstract: | [en] The aim of this project is to study a theorem of Ribet stating that the images of the Galois representations attached to modular forms without Complex Multiplication are large for almost every prime. Firstly, the needed background is introduced in the form of some definitions and basic properties of modular forms and Galois representations. Later, the subgroup classification of general linear groups over finite fields is presented, as well as other useful results from group theory. Finally, Ribet’s theorem is stated and proved using all the tools from algebraic number theory and group theory developed in the previous chapters. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Luis Victor Dieulefait |
URI: | https://hdl.handle.net/2445/202092 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_miquel_guiot_cusido.pdf | Memòria | 608.16 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License