Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208101
Title: A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Author: Jiao, Wei
Atwal, Gurnit
Polak, Paz
Karlic, Rosa
Cuppen, Edwin
PCAWG Tumor Subtypes and Clinical Translation Working Group
Danyi, Alexandra
de Ridder, Jeroen
van Herpen, Carla
Lolkema, Martijn P.
Steeghs, Neeltje
Getz, Gat
Morris, Quaid D.
Stein, Lincoln D.
PCAWG Consortium
Deu-Pons, Jordi
Frigola, Joan
Gonzalez-Perez, Abel
Muiños, Ferran
Mularoni, Loris
Pich, Oriol
Reyes-Salazar, Iker
Rubio-Perez, Carlota
Sabarinathan, Radhakrishnan
Tamborero, David
Aymerich Gregorio, Marta
Campo Güerri, Elias
López Guillermo, Armando
Gelpi Buchaca, Josep Lluís
Rabionet Janssen, Raquel
Keywords: Mutació (Biologia)
Genomes
Metàstasi
Mutation (Biology)
Genomes
Metastasis
Issue Date: 5-Feb-2020
Publisher: Nature Publishing Group
Abstract: In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41467-019-13825-8
It is part of: Nature Communications, 2020, vol. 11, num.1, p. 1-12
URI: https://hdl.handle.net/2445/208101
Related resource: https://doi.org/https://doi.org/10.1038/s41467-019-13825-8
ISSN: 2041-1723
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Fonaments Clínics)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
255384.pdf788.87 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons