Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/208500
Title: Many regular triangulations and many polytopes
Author: Padrol Sureda, Arnau
Philippe, Eva
Santos Leal, Francisco
Keywords: Politops
Geometria convexa
Polytopes
Convex geometry
Issue Date: 1-Jul-2023
Publisher: Springer Verlag
Abstract: We show that for fixed $d>3$ and $n$ growing to infinity there are at least $(n !)^{d-2 \pm o(1)}$ different labeled combinatorial types of $d$-polytopes with $n$ vertices. This is about the square of the previous best lower bounds. As an intermediate step, we show that certain neighborly polytopes (such as particular realizations of cyclic polytopes) have at least $(n !)^{\lfloor(d-1) / 2\rfloor \pm o(1)}$ regular triangulations.
Note: Reproducció del document publicat a: https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4
It is part of: Mathematische Annalen, 2023
URI: https://hdl.handle.net/2445/208500
Related resource: https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4
ISSN: 0025-5831
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
842208.pdf408.02 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons