Please use this identifier to cite or link to this item:
https://dipositint.ub.edu/dspace/handle/2445/208500
Title: | Many regular triangulations and many polytopes |
Author: | Padrol Sureda, Arnau Philippe, Eva Santos Leal, Francisco |
Keywords: | Politops Geometria convexa Polytopes Convex geometry |
Issue Date: | 1-Jul-2023 |
Publisher: | Springer Verlag |
Abstract: | We show that for fixed $d>3$ and $n$ growing to infinity there are at least $(n !)^{d-2 \pm o(1)}$ different labeled combinatorial types of $d$-polytopes with $n$ vertices. This is about the square of the previous best lower bounds. As an intermediate step, we show that certain neighborly polytopes (such as particular realizations of cyclic polytopes) have at least $(n !)^{\lfloor(d-1) / 2\rfloor \pm o(1)}$ regular triangulations. |
Note: | Reproducció del document publicat a: https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4 |
It is part of: | Mathematische Annalen, 2023 |
URI: | https://hdl.handle.net/2445/208500 |
Related resource: | https://doi.org/http://dx.doi.org/10.1007/s00208-023-02652-4 |
ISSN: | 0025-5831 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
842208.pdf | 408.02 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License