Please use this identifier to cite or link to this item: https://dipositint.ub.edu/dspace/handle/2445/174707
Title: Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
Author: Menden, Michael P.
Wang, Dennis
Mason, Mike J.
Szalai, Bence
Bulusu, Krishna C.
Guan, Yuanfang
Yu, Thomas
Kang, Jaewoo
Jeon, Minji
Wolfinger, Russ
Nguyen, Tin
Zaslavskiy, Mikhail
Jang, In Sock
Ghazoui, Zara
Ahsen, Mehmet Eren
Vogel, Robert
Neto, Elias Chaibub
Norman, Thea
Tang, Eric K. Y.
Garnett, Mathew J.
Veroli, Giovanni Y. Di
Fawell, Stephen
Stolovitzky, Gustavo
Guinney, Justin
Dry, Jonathan R.
Saez Rodríguez, Julio
Pujana Genestar, M. Ángel
Serra-Musach, Jordi
AstraZeneca-Sanger Drug Combination DREAM Consortium
Keywords: Càncer
Farmacogenètica
Cancer
Pharmacogenetics
Issue Date: 17-Jun-2019
Publisher: Springer Nature
Abstract: The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41467-019-09799-2
It is part of: Nature Communications, 2019, vol. 10
URI: https://hdl.handle.net/2445/174707
Related resource: https://doi.org/10.1038/s41467-019-09799-2
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
s41467-019-09799-2.pdf1.61 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons